THERMAL REACTIONS OF COORDINATION COMPOUNDS

PART III. DIAQUOTETRAMMINE-, ANIONOAQUOTETRAMMINE-, AND DIANIONOTETRAMMINE-COBALT (III) COMPLEXES

F. C. CHANG AND W. W. WENDLANDT

Thermochemistry Laboratory, Department of Chemistry, University of Houston, Houston, Texas 77004, (U. S. A.) (Received March 19th, 1971)

ABSTRACT

The solid-solid and gas-solid reactions of $[Co(NH_3)_4X_2]Y_{3-n}$ (n = 1, 2) complexes with NH₄X and HX were studied by various thermoanalytical techniques. The *trans*-preferred products were formed in most cases provided that NH₄⁺ (H⁺) and NO₃⁻ were both present in the reaction mixtures. With an excess of NO₃⁻ ion present, such as HNO₃, the completely nitrated product was obtained, according to the equation:

$$cis-[Co(NH_3)_4Cl_2]Cl \cdot 0.5H_2O \xrightarrow{HNO_3} trans-[Co(NH_3)_4Cl_2]NO_3 \xrightarrow{HNO_3} trans-[Co(NH_3)_4Cl_2]NO_3 \xrightarrow{HNO_3} trans-[Co(NH_3)_4(NO_3)_2]NO_3.$$

INTRODUCTION

In Parts I¹ and II² of this series, the solid-solid and gas-solid *trans*-preferred reactions of some diaquoammine-, aquohaloammine-, and dihalobis(ethylenediamine)-cobalt(III) complexes with various ammonium salts (NH₄X) and gases (HCl and HNO₃) were described. The subject of this investigation is to extend this series by the examination of the thermal *trans*-preferred reactions of the tetramminecobalt(III) complexes of the general formula, $[CoA_4X_2]^{n+}$, where A is ammonia and X may be an anion or water.

The dihalotetramminecobalt(III) complexes, $[Co(NH_3)_4Cl_2]Cl$ and $[Co-(NH_3)_4Br_2]Br$, have been reported^{3.4} to be the thermal degradation products from both the diaquo or aquohalo-complexes, $[Co(NH_3)_4(H_2O)_2]X_3$ and $[Co(NH_3)_4-(H_2O)X]X_2$ (X = Cl, Br). According to Mori *et al.*⁵, the products were the *cis*-isomers. However, Lemay and Bailar⁶ found that the product, *cis*- $[Co(NH_3)_4Cl_2]Cl$, obtained from the deaquation of the diaquo- or aquohalo-complexes was actually contaminated with other decomposition compounds. The reflectance spectrum of the product contained a strong absorption band in the 600–700 nm region which was due to the presence of the $[CoCl_4]^{2-}$ ion. The *cis*- $[Co(NH_3)_4Br_2]Br$ complex is even more difficult to obtain by the analogous thermal deaquation reaction because the two

Thermochim. Acta, 3 (1971) 69-80

bromide ions in the *cis*-position put an even greater steric strain on the structure than do the chloride ions. Chang and Wendlandt^{7,8} found that in most cases, *cis*-dihalobis-(ethylenediamine)cobalt(III) complexes were the main products in the thermal deaquation of the diaquo- or aquohalo-complexes.

Several $cis \rightarrow trans$ thermal isomerization reactions have been reported for cis-[Co(NH₃)₄Cl₂]Cl^{4.9}. The reverse reaction, $trans \rightarrow cis$, has been reported for trans-[Co(NH₃)₄Cl₂]IO₃·2H₂O^{6.10}, and was interpreted in terms of an aquation-anation reaction sequence. For the chromium(III) complex, trans-[Cr(NH₃)₄(H₂O)-Br]Br, the *cis*-isomer was formed by heating it at 153°C¹¹.

The subject of this investigation is two-fold: (1) the thermal properties of some diaquo- and aquohalotetramminecobalt(III) complexes; and (2) the thermal solid-solid and gas-solid *trans*-preferred reactions of these complexes with ammonium salts and various gases. In the former investigation, *cis*-[Co(NH₃)₄(H₂O)X]X₂ (X = Cl, Br) was the deaquation product from the diaquo- complexes, as previously reported⁴. Efforts to obtain the pure *cis*-dichloro-, chlorobromo-, and dibromotetrammine-complexes were unsuccessful. For the latter investigation, the reaction of [Co(NH₃)₄(H₂O)₂](NO₃)₃ with NH₄Cl and NH₄Br, gave *trans*-[Co(NH₃)₄Cl₂]Cl and *trans*-[Co(NH₃)₄(H₂O)₂]X₃. *cis*-[Co(NH₃)₄(H₂O)X]X₂ (X = Cl, Br), and *cis*-[Co(NH₃)₄-Cl₂]Cl and *trans*-[Co(NH₃)₄Cl₂]O, with NH₄NO₃ all resulted in the formation of the *trans*-[Co(NH₃)₄-Cl₂]NO₃ complexes. Gas-solid reactions of the above complexes all gave *trans*-[Co(NH₃)₄-Cl₂]NO₃ as the intermediate followed by the formation of the dinitrato-complex, *trans*-[Co(NH₃)₄(NO₃)₂]NO₃, as the final product.

EXPERIMENTAL PART

Preparation of compounds

The diaquo-complexes, $[Co(NH_3)_4(H_2O)_2]X_3$ (X = NO₃, Br), were prepared by the addition of HNO₃ or HBr to $[Co(NH_3)_4CO_3]NO_3 \cdot 0.5H_2O$. The reddish colored compounds precipitated immediately upon the addition of the acid and were filtered off, washed with 95% ethanol, diethyl ether, and dried at room temperature in air. The chloride complex, $[Co(NH_3)_4(H_2O)_2]Cl_3$, was prepared in a similar manner except that $[Co(NH_3)_4CO_3]Cl$ was employed as the starting material. The compounds, $[Co(NH_3)_4CO_3]NO_3 \cdot 0.5H_2O$ and $[Co(NH_3)_4CO_3)Cl$, were prepared by the method described by Schlessinger¹².

The haloaquo-complexes, cis-(Co(NH₃)₄H₂OX]X₂ (X = Cl, Br), were prepared by the thermal deaquation of the corresponding diaquo-complexes. Maximum temperatures of heating were 70 and 45 °C, for the chloride and bromide complexes, respectively. The mixed halo-complexes, cis-[Co(NH₃)₄H₂O Cl]Br₂ and cis-[Co(NH₃)₄H₂OBr]Cl₂-0.5H₂O, were prepared by the addition of ice-cold concentrated HBr or HCl to saturated solutions of cis-[Co(NH₃)₄H₂OCl]Cl₂ and cis-[Co(NH₃)₄H₂OBr]Br₂, respectively. The compounds, cis-[Co(NH₃)₄H₂OX](NO₃)₂ (X = Cl, Br), were prepared by a similar method except that dilute HNO₃ was employed. Several hours were taken for the violet colored precipitates to separate from solution. The nitrato-complexes, $[Co(NH_3)_4H_2ONO_3](NO_3)_2^{13}$ and $[Co-(NH_3)_4(NO_3)_2]NO_3^{14}$, were prepared as previously described.

Trans-[Co(NH₃)₄Cl₂]Cl·H₂O was prepared by the method described by Schlessinger¹²; the anhydrous product was obtained by heating this compound at 100°C for several hours. *Cis*-[Co(NH₃)₄Cl₂]Cl·0.5H₂O was prepared by the method of Werner¹⁵, as was the complex, *cis*-[Co(NH₃)₄Cl₂]₂S₂O₆. The compound, *trans*-[Co(NH₃)₄Br₂]Br, was prepared as previously described¹⁶.

Analyses of the complexes are shown in Table I.

TABLE I

ANALYSES OF COMPLEXES

Compound	Co(%)		NH3(%)	
	Theor.	Found	Theor.	Found
[Co(NH ₃) ₄ (H ₂ O) ₂](NO ₃) ₃	16.88	17.4	19.51	19.6
$[C_0(NH_3)_4(H_2O)_2]Br_3$	14.63	14.5	16.91	16.1
$[C_0(NH_3)_4(H_2O)_2]Cl_3$	21.87	22.0	25.28	24.7
[Co(NH ₃) ₄ H ₂ OCI]Cl ₂	23.44	23.6	27.09	26.8
[Co(NH ₃) ₄ H ₂ OBr]Br ₂	15.32	15.1	17.70	17.4
[Co(NH ₃) ₄ H ₂ OCl]Br ₂	17.32	17.2	20.02	20.8
[Co(NH ₃) ₄ H ₂ OBr]Cl ₂ -0.5H ₂ O	19.33	20.2	22.34	23.1
$[C_0(NH_3)_4H_2OCI](NO_3)_2$	19.35	19.7	22.34	22.4
$[Co(NH_3)_4H_2OBr](NO_3)_2$	16.89	16.3	19.52	19.1
[Co(NH ₃) ₄ H ₂ ONO ₃](NO ₃) ₂	17.80	17.7	20.58	20.7
$[C_0(NH_3)_4(NO_3)_2]NO_3 \cdot H_2O$	17.80	18.1	20.58	20.8
[Co(NH ₃) ₄ Cl]Cl ₂	25.25	25.9	29.18	28.9
[Co(NH ₃) ₄ Cl ₂]Cl·0.5H ₂ O	24.31	23.9	28.10	28.5

Thermal solid-solid reactions

The mixture of solids was prepared as previously described¹ by using a weight ratio of complex-ammonium salt of 1:3 (for NH_4NO_3) or 1:10 (for NH_4Cl or NH_4Br). The freshly prepared mixture was placed in an oven at reaction temperature; completion of the reaction was indicated by the color change (for *trans*-[Co(NH_3)₄Cl₂]⁺ green; for *trans*-[Co(NH_3)₄Br₂]⁺ — yellowish green). The resulting mixture was then extracted with ethanol several times. The products were insoluble in ethanol; however, pure compounds were difficult to obtain. The purified products were identified by reflectance spectroscopy and by elemental analysis. The approximate reaction temperatures were determined either by a capillary tube method, using a Thomas-Hoover melting apparatus, or by high temperature reflectance spectroscopy (HTRS)¹⁷.

Thermal gas-solid reactions

The procedure used was the same as that previously described¹.

Reflectance measurements

A Beckman Model DK-2A spectroreflectometer was used to obtain the reflectance spectra. Freshly prepared MgO was used as the reflectance reference.

Mass-loss and isothermal vacuum deaquation

Mass-loss studies were performed on the DuPont thermogravimetric analyzer, Model 950. Sample sizes used ranged in mass from 4–5 mg; a heating rate of 5°C/min, and a dynamic nitrogen furnace atmosphere were employed. Low-pressure isothermal deaquation reactions were carried out by placing the weighed aquo-complexes in a vacuum oven at 90–110°C until the weight-loss corresponded to the loss of coordinated water.

RESULTS AND DISCUSSION

Mass-loss and isothermal deaquation studies

The mass-loss curves of the complexes, cis-[Co(NH₃)₄H₂OCl]Br₂, cis-[Co(NH₃)₄H₂OBr]Cl₂·0.5H₂O, cis-[Co(NH₃)₄H₂OCl](NO₃)₂, and cis-[Co(NH₃)₄-H₂OBr](NO₃)₂, are shown in Fig. 1. Under the given experimental conditions, curves A and B do not indicate intermediate mass plateaus due to the deaquation of the coordinated water. In curve C, cis-[Co(NH₃)₄H₂OCl](NO₃)₂ is found to dissociate

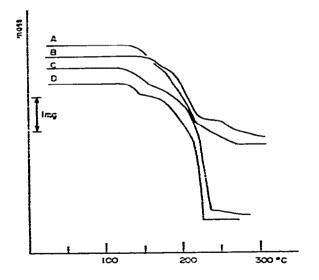


Fig. 1. Mass-loss curves of complexes. (A) cis-[Co(NH₃)₄H₂OBr]Cl₂·0.5H₂O. (B) cis-[Co(NH₃)₄-H₂OCI]Br₂. (C) cis-[Co(NH₃)₄H₂OCI](NO₃)₂. (D) cis-[Co(NH₃)₄H₂OBr](NO₃)₂.

slightly before the deaquation is completed. Only the complex in curve C, cis-[Co(NH₃)₄H₂OBr](NO₃)₂, shows complete mass-loss due to the deaquation reaction. Therefore, the preparation of the new complexes, [Co(NH₃(₄Cl(NO₃)]NO₃ and [Co(NH₃)₄Br(N)₃)]NO₃, by low pressure isothermal deaquation appears possible. At the present time, no attempt was made to prepare and isolate the product which would contain the cis- + trans-isomers. From curves A and B, the preparation of the dihalotetramminecobalt(III) complexes by thermal deaquation appears to be difficult.

From the low pressure isothermal deaquation reactions, bluish-violet colored deaquation products were obtained from cis-[Co(NH₃)₄H₂OCl]Cl, cis-[Co(NH₃)₄-H₂OCl]Br₂, and cis-[Co(NH₃)₄H₂OBr]Br₂·0.5H₂O; however, a dull-green colored product was obtained from cis-[Co(NH₃)₄H₂OBr]Br₂. Although the ammonia contents of all of the above suspected dihalotetramminecobalt(III) complexes were close to the calculated values, the deaquation product from cis-[Co(NH₃)₄H₂OCl]Cl₂ exhibited the bluishviolet color characteristic of cis-[Co(NH₃)₄Cl₂]Cl·0.5H₂O¹².

The reflectance spectra of all of the dihalotetramminecobalt(III) complexes, as shown in Fig. 2, indicate two common properties: (1) a strong absorption between

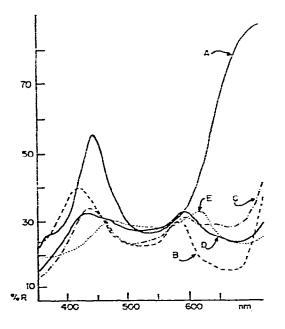


Fig. 2. Reflectance spectra of deaquation products. (A) cis-[Co(NH₃)₄Cl₂]₂S₂O₆. (B) deaquation product from cis-[Co(NH₃)₄H₂OCl]Cl₂. (C) deaquation product from cis-[Co(NH₃)₄H₂OCl]Br₂. (D) deaquation product from cis-[Co(NH₃)₄H₂OBr]Cl₂. (E) deaquation product from cis-[Co(NH₃)₄H₂OBr]H₂OBr]Br₂.

600-700 nm; and (2) two reflectance peaks at about 450 and 600 nm, respectively. The reflectance spectrum of cis-[Co(NH₃)₄Cl₂]₂S₂O₆ shows clearly only one absorption and one reflectance maximum at 535 and 440 nm, respectively. This complex has been shown to have the *cis*-isomeric configuration and the absorption maximum at 535 nm is in agreement with the literature⁶. Apparently, the absorption band at 600-700 nm is due to deaminated and/or a reduced product containing the ion, [CoCl₄]²⁻, or its bromide analog. Neither the *cis*- or *trans*-[Co(NH₃)₄ClBr]⁺ complexes have been successfully prepared; we can predict, however, that *cis*-[Co(NH₃)₄ClBr]⁺ should

Thermochim. Acta, 3 (1971) 69-80

have a spectrum similar to cis-[Co(NH₃)₄Cl₂]⁺, with a slight shifting to a higher wavelength. Therefore, the suspected cis-[Co(NH₃)₄ClBr]⁺ is probably contaminated with some reduced Co(II) product. Due to the greater steric strain for two coordinated bromide ions in the cis-position, the possibility for the formation of cis-[Co(NH₃)₄Br₂]⁺ is even more doubtful.

Solid-state trans-preferred reactions of complex nitrates

The reaction mixtures studied, the approximate reaction temperature range, and the main products are given in Table II.

TABLE II

	Reaction mixture	Temperature intercal (°C)	Main product
I 8- I	$[Co(NH_3)_4(H_2O)_2](NO_3)_3 + NH_4Cl$	90-115	trans-[Co(NH3)4Cl2]Cl4
18-2	$[C_0(NH_3)_4H_2O(NO_3)](NO_3)_2 + NH_4CI$	90-115	trans-[Co(NH ₃) ₄ Cl ₂]Cl ^a
II-3	$[C_0(NH_3)_4(NO_3)_2]NO_3 \cdot H_2O + NH_4CI$	90-115	trans-[Co(NH3)+Cl2]Cl4
18-4	$[Co(NH_3)_4(H_2O)_2](NO_3)_3 + NH_2Br$	110-125	trans-[Co(NH ₃) ₄ Br ₂]Br ⁴
HI-5	$[C_0(NH_3)_4(H_2O)_2](NO_3)_3 + CH_3NH_3CI$	75 ^b	cis- + trans-[Co(NH3)4Cl2]
II-6	$[C_0(NH_3)_4(H_2O)_2](NO_3)_3 + (CH_3)_2NH_2CI$	80 °	$cis + trans - [Co(NH_3)_+Cl_2]$
II-7	$[Co(NH_3)_4(H_2O)_2](NO_3)_3 \div (CH_3)_3NHCl$	8 0 *	$cis + trans - [Co(NH_3)_4Cl_2]$
11-8	$[C_0(NH_3)_4(H_2O)_2](NO_3)_3 + KCl$		no trans-product
II-9	$[C_0(NH_3)_4(H_2O)_2](NO_3)_3 + KBr$		no trans-product
II-10	$[C_0(NH_3)_4(H_2O)_2](NO_3)_3 + (CH_3)_4NCI$		no trans-product
II-11	$[C_0(NH_3)_4H_2OCI](NO_3)_2+NH_4CI$	115-125	frans-[Co(NH ₃) ₄ Cl ₂] ⁺
II-12	$[C_0(NH_3)_4H_2OCI](NO_3)_2 + NH_4Br$	115-125	frans-[Co(NH ₃) ₄ ClBr] ⁺
II-13	$[Co(NH_3)_2H_3OBr](NO_3)_3 + NH_2Br$	115-125	frans-[Co(NH ₃) ₄ Br ₂] ⁺

SOLID-STATE REACTION OF COMPLEX-NITRATES

"The product was identified by reflectance and other analytical methods after purification; halide rather than nitrate in the product. "The reaction mixture exhibits a color change of from pink-red to almost blue (*cis*-) even at room temperature. The product was identified by its reflectance spectrum

The reaction of $[Co(NH_3)_4(H_2O)_2](NO_3)_3$ with NH_4Cl , as shown by the curves in Fig. 3, indicates that *trans*- $[Co(NH_3)_4Cl_2]^+$ is formed at temperatures between 100-125°C. The complex, $[Co(NH_3)_4(H_2O)_2]^{3+}$, has been found to undergo a *cis-trans* isomerization in solution with an equilibrium constant of 6.0 ± 0.5 at 20°C. Apparently, the diaquotetramminecobalt(III) complexes (chloride, bromide, and nitrate) prepared here are in the *cis*- form because a precipitate is formed immediately before any isomerization occurs.

The formation of *trans*-[Co(NH₃)₄Cl₂]⁺ from the reactions, [Co(NH₃)₄-H₂O(NO₃)](NO₃)₂+NH₄Cl (II-2) and [Co(NH₃)₄(NO₃)₂]NO₃·H₂O+NH₄Cl (II-3), occurs in about the same temperature ranges as the diaquo-nitrate (II-1). A slightly higher temperature is found for the reaction, [Co(NH₃)₄(H₂O)₂](NO₃)₃+NH₄Br (II-4); the green colored *trans*-[Co(NH₃)₄Br₂]⁺ is obtained between 110-125°C. Reaction temperatures are lower for the reactions between [Co(NH₃)₄(H₂O)₂](NO₃)₃

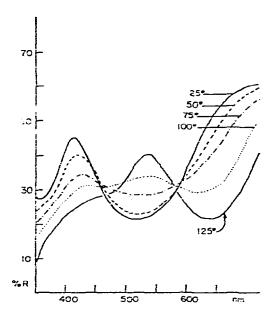


Fig. 3. Reflectance curves of $[C_{G}(NH_{3})_{4}(H_{2}O)_{2}](NO_{3})_{3} + NH_{4}Cl$ at various temperatures.

and various onium chlorides (II-5, II-6, II-7), but these mixtures evolve liquid water so that the final mixture contains both *cis*- and *trans*-[Co(NH₃)₄Cl₂]⁺ products. There is no *trans*-[Co(NH₃)₄Cl₂]⁺ product from the reactions of [Co(NH₃)₄(H₂O)₂]-(NO₃)₃ with KCl or (CH₃)₄NCl (II-8 and II-10); the lack of NH₄⁺ ion or nitrogen bonded hydrogen is responsible for these negative results. The reactions, *cis*-[Co(NH₃)₄H₂OCl](NO₃)₂+NH₄Cl (II-11), show the *trans*-preferred reaction as predicted. However, the percentage yield of the *trans*-product is lower than that for the diaquo-nitrate (II-1) reaction and higher temperatures and longer reaction times are necessary. Apparently, *cis*-[Co(NH₃)₄H₂OCl](NO₃)₂ is not the intermediate product from *cis*-[Co(NH₃)₄(H₂O)₂](NO₃)₃ + NH₄Cl (II-1) as expected. The product, *trans*-[Co(NH₃)₄ClBr]Br, was qualitatively identified in the reaction mixture, [Co(NH₃)₄(H₂O)Cl](NO₃)₂ + NH₄Br (II-13).

The reflectance maxima for *trans*- $[Co(NH_3)_4Cl_2]^+$ and *trans*- $[Co(NH_3)_4Br_2]^+$ are 535 and 563 nm, respectively. The product from (II-12) after purification showed a broad reflectance band with a maximum at 550 nm. It was not possible to obtain pure *trans*- $[Co(NH_3)_4ClBr]^+$ from the reaction (II-12) because of the rapid hydrolysis which made recrystallization impossible.

Solid-state trans-preferred reactions of complex-halides

The solid-state *trans*-preferred reactions of the complex halides are summarized in Table III. The reflectance curves of a mixture of $[Co(NH_3)_4(H_2O)_2]Cl_3 + NH_4NO_3$ at various temperatures are illustrated in Fig. 4.

For the reaction illustrated in Fig. 4, the product, trans-[Co(NH₃)₄Cl₂]NO₃, is seen to be obtained between 75-100°C (85-95°C, color change observed). The

reaction temperature range for the mixture, cis-[Co(NH₃)₄H₂OCl]Cl₂+NH₄NO₃ (III-2), was higher than that for the diaquo-chloride, namely, 100–120°C. For the

TABLE III

SOLID-STATE IFARS-PREFERRED	REACTIONS OF SOME COMPLEX-HALIDES	

	Reaction mixture	Reaction temperature (Main product (°C)
111-1	[Co(NH ₃) ₄ (H ₂ O) ₂]Cl ₃ + NH ₄ NO ₃	8595	trans-[Co(NH ₃) ₄ Cl ₂]NO ₃ ^e
III-2	cis-[Co(NH ₃) ₄ H ₂ OCI]Cl ₂ + NH ₄ NO ₃	100-120	trans-[Co(NH ₃) ₄ Cl ₂]NO ₃ ^a
III-3	$cis-[Co(NH_3)_4Cl_2]Cl \cdot 0.5H_2O + NH_4NO_3$	100-115	trans-[Co(NH ₃) ₄ Cl ₂]NO ₃ ⁴
III-4	$[Co(NH_3)_4(H_2O)_2]Cl_3 \div KNO_3$		never changed to green
HI-5	$[Co(NH_3)_4(H_2O)_2]Br_3 + NH_4NO_3$	75-95	trans-[Co(NH ₃) ₄ Br ₂]NO ₃ ^b
III-6	$cis-[Co(NH_3)_4H_2OBr]Br_2 + NH_4NO_3$	90-125	trans-[Co(NH ₃) ₄ Br ₂]NO ₃ ^b
III-7	$[Co(NH_3)_4H_2OBr]Br_2 + NH_4Br$		never changed to green
III-8	$[Co(NH_3)_4(H_2O)_2]Cl_3 + NaNO_3 + NH_4Cl$	80-120	^c trans-[Co(NH ₃) ₄ Cl ₂] ⁺
III-9	cis-[Co(NH ₁) ₄ H ₂ OCI]Br ₂ + NH ₄ NO ₃	~125	^c trans-[Co(NH ₃) ₄ ClBr] ⁺
111-10	cis-[Co(NH ₃) ₄ H ₂ OBr]Cl ₂ ·0.5H ₂ O + NH ₄ NC	D₃ ~125	⁴ trans-[Co(NH ₃) ₄ Cl ₂] ⁺ +(trans-[Co(NH ₃) ₄ ClBr] ⁺

"Product was identified by reflectance data and analysis for NH₃ and Cl⁻ after purification. "Product was identified by reflectance spectroscopy; pure compound was difficult to obtain. 'Identified by reflectance. "Reflectance data showed *trans*-[Co(NH₃)₄Cl₂]⁺ in final product, but *trans*-[Co(NH₃)₄-ClBr]⁺ is also believed to be present.

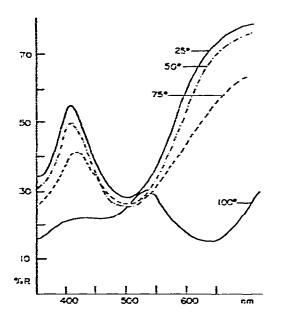


Fig. 4. Reflectance curves of a mixture of $[Co(NH_3)_4(H_2O)_2]Cl_3 + NH_4NO_3$ at various temperatures.

mixture, cis-[Co(NH₃)₄Cl₂]Cl·0.5H₂O+NH₄NO₃ (III-3), the *trans*-preferred or cis-trans isomerization took place between 110–115°C, or slightly lower than that of reaction (III-2). By comparison with previously studied [Co(en)₂X₂]^{a+} systems, the

reverse order found for reactions (III-2) and (III-3) is interpreted in terms of the strong bonding of Co-OH₂ in *cis*-[Co(NH₃)₄H₂OCl]Cl₂, as indicated by the evidence that higher temperatures are required for deaquation (170-200 °C). As previously mentioned¹, the bond breaking is important to obtain the trigonal bipyramid intermediate which is necessary for the *trans*-preferred reaction.

No *trans*-product was found in the products from reaction mixtures (III-4) and (III-7), because the *trans*-preferred conditions¹ were not met in those mixtures. The complex, *trans*-[Co(NH₃)₄ClBr]NO₃, is the product from the reaction mixtures of *cis*-[Co(NH₃)₄H₂OCl]Br₂+NH₄NO₃ (III-9). From the reflectance spectra, *trans*-[Co(NH₃)₄Cl₂]⁺ rather than *trans*-[Co(NH₃)₄ClBr]⁺, was the final product in the mixture, *cis*-[Co(NH₃)₄H₂OBr]Cl₂·0.5H₂O+NH₄NO₃ (III-10).

Gas-solid trans-preferred reactions

The reaction temperatures and products for the gas-solid reactions of the complexes are given in Table IV.

TABLE IV

GAS-SOLID trans-PREFERRED REACTIONS

	Reaction mixture	Experimental temperature (°C)	Main product
IV-1	[Co(NH ₃) ₄ (H ₂ O) ₂](NO ₃) ₃ + HCl(g)	85	trans-[Co(NH ₃) ₄ Cl ₂]Cl(NO ₃) ⁶
IV-2	$[Co(NH_3)_4H_2ONO_3](NO_3)_2 + HCl(g)$	85	trans-[Co(NH ₃) ₄ Cl ₂]Cl(NO ₃) ^b
IV-3	$[Co(NH_3)_4(NO_3)_2]NO_3 \cdot H_2O + HCl(g)$	85	trans-[Co(NH ₃) ₄ Cl ₂)Cl(NO ₃) ^b
IV-4	$[Co(NH_3)_4(H_2O)_2](NO_3)_3 + HBr(g)$	85	trans-[Co(NH ₃) ₄ Br ₂]Br(NO ₃)
IV-5	$[Co(NH_3)_4(H_2O)_2](NO_3)_3 + CH_3Cl(g)$	150	ro effect
IV-6	$[C_0(NH_3)_4(H_2O)_2]Cl_3 + HNO_3(g)$)	trans-[Co(NH ₃) ₄ Cl ₂]NO ₃ ^c
IV-7	cis-[Co(NH ₃) ₄ H ₂ OCI]Cl ₂ + HNO ₃ (g)	115	↓ prolonged time
IV-8	cis-[Co(NH ₃) ₄ Cl ₂]Cl·0.5H ₂ O+HNO ₃ (g)	trans-[Co(NH ₃) ₄ (NO ₃) ₂]NO ₃
IV-9	$[Co(NH_3)_4(H_2O)_2]Cl_3 + HCl(g)$	150	no effect
IV-10	all complexes $+ NH_3(g)$	150	no effect

The temperature shown is the temperature at which the experiment was performed. ^bGaseous HCl or HBr was passed through the preheated complex, brownish gas (NO₂) and liberation of heat were observed. If HCl passed over the surface of precooled complex (\sim 5°C), the reaction is slow and the bluish-violet product (*cis*-[Co(NH₃)₄Cl₂]⁺) rather than green *trans*-isomer is obtained. ^cIt is difficult to judge and to stop the reaction to obtain the green *trans*-[Co(NH₃)₄Cl₂]⁺ product.

The green colored *trans*-[Co(NH₃)₄Cl₂]Cl is the major product when gaseous HCl is passed through the complex nitrates as seen in reactions (IV-1) to (IV-3). Under these conditions, the product is formed almost instantly, and a brown gas (NO₂) is evolved. The results indicate that HNO₃ is probably first formed between the HCl and the complex-nitrate which in turn acts as a catalyst for the *trans*-preferred reaction. The gas-solid reactions between HNO₃ and the complex-chlorides also produced the *trans*-dichloro products. The yellowish-green *trans*-[Co(NH₃)₄Br₂]⁺ is

also found in the product from the reaction, $[Co(NH_3)_4(H_2O)_2](NO_3)_3 + HBr (IV-4)$. There was no reaction between gaseous CH₃Cl and $[Co(NH_3)_4(H_2O)_2](NO_3)_3$; this indicates the role of H⁺ ion in the *trans*-preferred reaction. A similar negative result was found in the reaction between $[Co(NH_3)_4(H_2O)_2](NO_3)_3 + (CH_3)_4NCl (II-10)$. The results from Table IV indicate that the reactions between gaseous hydrogen halides (HCl and HBr) and complex-nitrates are related to the solid-state reaction with ammonium halides (NH₄Cl and NH₄Br), reactions (III-1) to (III-4). There is no green *trans*-product formed in the reaction between gaseous HCl and $[Co(NH_3)_4-(H_2O)_2]Cl_2$ (or *cis*- $[Co(NH_3)_4H_2OCI]Cl_2$). This result again emphasizes the important role of NO₃⁻ in the *trans*-preferred reaction. The most interesting reactions are those between gaseous HNO₃ and the complex chlorides, reactions (IV-6) to (IV-8). As the hot gaseous HNO₃ passes over the surface of the complexes at elevated temperature, the green *trans*-dichloro product is first formed. On prolonged reaction, the red dinitrato-nitrate product is obtained. In Fig. 5, curves A and B are the reflectance

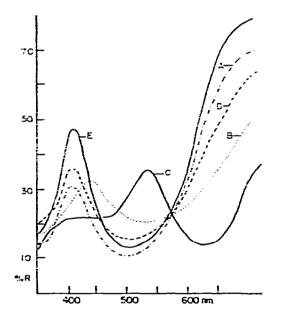
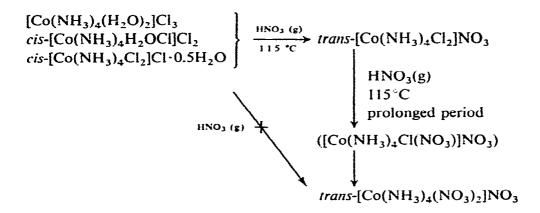
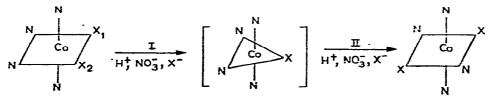



Fig. 5. Reflectance spectra of various complexes. (A) $[Co(NH_3)_4(H_2O)_2]Cl_3$. (B) cis- $[Co(NH_3)_4-H_2OCI]Cl_2$. (C) trans- $[Co(NH_3)_4Cl_2]NO_3$ from (A) or (B) + HNO_3(g). (D) trans- $[Co(NH_3)_4(NO_3)_2]-NO_3$ from (A) or (B) + HNO_3(g). (E) $[Co(NH_3)_4(NO_3)_2]NO_3$ prepared from literature.


spectra of $[Co(NH_3)_4(H_2O)_2]Cl_3$ and *cis*- $[Co(NH_3)_4H_2OCl]Cl_2$ before treatment with HNO₃ gas, while curve C is the first intermediate product, *trans*- $[Co(NH_3)_4-Cl_2]NO_3$. Curve D is the red colored final product, *trans*- $[Co(NH_3)_4(NO_3)_2]NO_3$, obtained after prolonged HNO₃ (g) contact with the complex. Analysis of the latter product and comparison with an authentic sample of $[Co(NH_3)_4(NO_3)_2]NO_3$ (curve E) confirm its structure and composition. The *trans*-preferred and *cis-trans* isomerization reactions can be summarized as follows:

The other possible intermediate, $[Co(NH_3)_4Cl(NO_3)]NO_3$, was not isolated so its existence is uncertain.

Mechanism of trans-preferred reactions

According to previous reports in this series^{1,2}, *trans*-dihalo products can be obtained in all cases if both the proton (from HCl, HNO₃, NH₄NO₃, or NH₄Cl) and nitrate ions are present. It has been proposed that dissociation to a trigonal bipyramid transition state probably occurs in all of the *trans*-preferred reactions, according to the reaction:

where X_1 , $X_2 = H_2O$, NO_3^- , CI^- , or Br^- , etc.; $X^- = CI^-$, Br.

In this proposed mechanism, $H^+NO_3^-$ (or $NH_4^+NO_3^-$) is necessary for two reasons: (1) to cause the formation of a trigonal bipyramid cobaltium ion, and (2) to induce the entering halide ion to attack the nitrogen-nitrogen (*trans*-effect). The $H^+NO_3^-$ (or $NH_4^+NO_3^-$) obviously plays an important role in the *trans*-preferred reaction, but the actual orientation of H^+ and NO_3^- in the transition state is unknown; it presumably associates to the coordinated chloride through a hydrogen bond. Such a mechanism has frequently been employed to interpret *cis-trans* transformations in octahedral complex reactions. Very few of these mechanisms can satisfactorily explain why the entering group favors the *trans*-addition following the transition state

Thermochim. Acta, 3 (1971) 69-80

(theoretically only 1/3 enter this edge). A high temperature is usually required for *trans*-preferred reactions which means that enough energy has to be supplied for the formation of trigonal bipyramid transition states.

CONCLUSIONS

The replacement of coordinated chloride ions by nitrate ions in the complexes, cis-[Co(NH₃)₄Cl₂]Cl (or cis-[Co(en)₂Cl₂]Cl), has to be via a cis-trans isomerization reaction in gas-solid reactions. The whole problem is simply that the trans-preferred or cis-trans isomerization reaction is nothing more than an intermediate step to form a suitable orientation of the coordinated chlorides ($cis \rightarrow trans$) for further substitution by nitrate ions. The identification of the products from the solid-state (or gas-solid) heterogeneous reactions are more qualitative than quantitative. However, when chemical reactions occur which involve two solids, the progress of the chemical change is a complex process which depends upon the area and defect structure of contact areas between the reactants. Furthermore, for many solid-solid reactions, the product formed may have different properties from those prepared by other chemical methods due to different concentrations of defects and different crystalline structures¹⁸. For solid-solid reactions of coordination compounds, the structure of the coordination sphere is easily identified by reflectance spectroscopy; it is much more difficult to identify the ions in the outer sphere by this technique.

ACKNOWLEDGMENT

The financial support of this work by the Robert A. Welch Foundation of Houston, Texas, is gratefully acknowledged.

REFERENCES

- 1 F. C. CHANG AND W. W. WENDLANDT, J. Inorg. Nucl. Chem., 32 (1970) 3535.
- 2 F. C. CHANG AND W. W. WENDLANDT, Thermochim. Acta, 2 (1971) 293.
- 3 S. M. JORGENSEN, Z. Anorg. Chem., 2 (1892) 294.
- 4 W. W. WENDLANDT, W. R. ROFINSON AND W. Y. YANG, J. Inorg. Nucl. Chem., 25 (1961) 1495.
- 5 M. MORI, R. TSUCHIYA, S. TAKEMURA AND E. MATSUDA, Bull. Chem. Soc. Japan, 34 (1961) 1757.
- 6 H. E. LEMAY AND J. C. BAILAR, J. Amer. Chem. Soc., 89 (1967) 5577.
- 7 F. C. CHANG AND W. W. WENDLANDT, J. Inorg. Nucl. Chem., 32 (1970) 3775.
- 8 F. C. CHANG AND W. W. WENDLANDT, Thermochim. Acta, 1 (1970) 495.
- 9 G. W. WATT AND D. A. BUTLER, Inorg. Chem., 5 (1966) 1106.
- 10 N. I. LOBANOV, Russ. J. Inorg. Chem., 4 (1959) 151.
- 11 Y. KAJI, A. UEHARA, E. KYUNO AND R. TSUCHIYA, Bull. Chem. Soc. Japan, 43 (1970) 1906.
- 12 G. SCHLESSINGER, Inorganic Laboratory Preparations, Chemical Publishing Company, New York, 1962.
- 13 J. W. MELLOR (Ed.), A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Vol. XIV, Longmans, Green, London, 1935, p. 837.
- 14 E. BIRK, Z. Anorg. Chem., 164 (1927) 241.
- 15 Ref. 12, p. 241.
- 16 Ref. 12, p. 236.
- 17 W. W. WENDLANDT (Ed.), Modern Aspects of Reflectance Spectroscopy, Plenum Press, New York, 1968, p. 58.
- 18 A. K. GALWEY, Chemistry of Solids, Chapman and Hall, London, 1967, p. 195.